Part Number Hot Search : 
2SC5763 BU9831 AT88S 03800 BYG20 M9514SE2 AF9435PS MAXIM
Product Description
Full Text Search
 

To Download E48SP12020NRFA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ` datasheet ds_e48sp12020_08022010 features ? high efficiency: 94.5% @12v/20a ? size: 58.4mm x 22.8mm x 10.9mm (2.30?x0.90?x0.43?) w/o heat spreader 58.4mm x 22.8mm x 12.7mm (2.30?x0.90?x0.5?) with heat spreader ? industry standard pin out ? fixed frequency operation ? input uvlo, output ocp & ovp, otp ? monotonic startup into normal and pre-biased loads ? 2250v isolation and basic insulation ? no minimum load required ? no negative current during power on or power off; ? iso 9001, tl 9000, iso 14001, qs 9000, ohsas 18001 certified manufacturing facility ? ul/cul 60950-1 (us & canada) recognized. applications ? telecom/datacom ? wireless networks ? optical network equipment ? server and data storage ? industrial/test equipment options ? positive on/off logic ? short pin lengths available delphi series e48sp eighth brick family dc/dc power modules: 48v in, 12v/20a out the delphi series e48sp, 36~75v input, eighth brick, single output, isolated dc/dc converters are the latest offering from a world leader in power systems technology and manufacturing D delta electronics, inc. the e48sp product provides up to 240 watts of power in an industry standard footprint and pinout. the e48sp converter operates from an input voltage of 36v to 75v. efficiency is 94.5% for the 12v output at full load. with creative design technology and optimization of component placement, these converters possess outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. all models are fully protected from abnormal input/output voltage, current, and temperature conditions. the delphi series converters meet all safety requirements with basic insulation.
ds_e48sp12020_08022010 2 technical specifications (t a =25c, airflow rate=300 lfm, v in =48vdc, nominal vout unless otherwise noted.) parameter notes and conditions e48sp12020 (standard) min. typ. max. units absolute maximum ratings input voltage continuous 80 vdc transient (100ms) 100ms 100 vdc operating case temperature (without heat spreader) refer to figure 18 for measuring point -40 122 c operating case temperature (with heat spreader) refer to figure 20 for measuring point -40 110 c storage temperature -55 125 c input/output isolation voltage 2250 vdc input characteristics operating input voltage 36 75 vdc input under-voltage lockout turn-on voltage threshold 32.5 34 35.5 vdc turn-off voltage threshold 30.5 32 33.5 vdc lockout hysteresis voltage 1 2 3 vdc maximum input current vin=36v, 100% load, 7 7.8 a no-load input current 70 150 ma off converter input current 8 12 ma inrush current(i 2 t) with 100uf external input capacitor 1 a 2 s start up current peak, vin=36v, 100% load, with 5000uf co 7 12 a input terminal ripple current rms, vin=48v, with 100uf input cap. 0.16 0.24 a input reflected-ripple current p-p thru 12h inductor, 5hz to 20mhz 6 ma input voltage ripple rejection 120 hz 60 db output characteristics output voltage set point vin=48v, io=io.max, tc=25c 11.67 11.85 12.02 vdc output voltage regulation over load io=io,min to io,max + 20 mv over line vin=36v to 75v + 15 mv over temperature tc=-40c to 125c 120 mv total output voltage range over sample load, and temperature 11.5 11.85 12.2 v output voltage ripple and noise 5hz to 20mhz bandwidth peak-to-peak full load, 1f ceramic, 10f tantalum 100 200 mv rms full load, 1f ceramic, 10f tantalum 40 80 mv operating output current range full input voltage range 0 20 a output dc current-limit inception output voltage 10% low 110 150 % dynamic characteristics output voltage current transient 48v, 10f tan & 1f ceramic load cap, 0.1a/s positive step change in output current 50% io.max to 75% io.max 200 400 mv negative step change in output current 75% io.max to 50% io.max 200 400 mv setting time (within 1% vout nominal) 200 s turn-on transient start-up time, from on/off control 30 40 ms start-up time, from input 30 40 ms maximum output capacitance full load; no overshoot of vout at startup 5000 f efficiency 100% load vin=48v 93.5 94.5 % 60% load vin=48v 94 95 % isolation characteristics input to output 2250 vdc isolation resistance 10 m ? isolation capacitance 1500 pf feature characteristics switching frequency 220 khz on/off control, negative remote on/off logic logic low (module on) von/off -0.7 0.8 v logic high (module off) von/off 2.4 50 v on/off control, positive remote on/off logic logic low (module off) von/off -0.7 0.8 v logic high (module on) von/off 2.4 50 v on/off current (for both remote on/off logic) ion/off at von/off=0.0 v 1 m a on/off current ( for both remote on/off lo g ic ) ion/off at von/off=2.4 v 10 a leakage current (for both remote on/off logic) logic high, von/off=15v 50 a output over-voltage protection over full temp range; % of nominal vout 14.6 18 v general specifications mtbf io=100% of io, max; 300lfm; ta=25 x c 1.19 m hours weight open frame 29.1 grams weight with heat spreader 39.2 grams over-temperature shutdown ( without heat spreader) refer to figure 18 for measuring point 132 c over-temperature shutdown (with heat spreader) refer to figure 20 for measuring point 120 c
ds_e48sp12020_08022010 3 electrical characteristics curves 86 87 88 89 90 91 92 93 94 95 96 2 4 6 8 10 12 14 16 18 20 output current(a) efficiency(%) 36v 48v 75v 0 2 4 6 8 10 12 14 16 18 20 02468101214161820 output current(a) power loss(w) 36v 48v 75v figure 1: efficiency vs. load current for minimum, nominal, and maximum input voltage at 25c figure 2: power dissipation vs. load current for minimum, nominal, and maximum input voltage at 25c 0 1 2 3 4 5 6 7 8 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 input voltage(v) input current(a) 0 3 6 9 12 15 0 5 10 15 20 25 30 output current(a) output voltage(v) figure 3: typical full load input characteristics at room temperature figure 4: output voltage regulation vs load current showing typical current limit curves and converter shutdown points for minimum, nominal, and maximum input voltage at room temperature
ds_e48sp12020_08022010 4 electrical characteristics curves for negative remote on/off logic figure 5: turn-on transient at zero load current (10ms/div). vin=48v. top trace: vout, 5v/div; bottom trace: on/off input, 5v/div figure 6: turn-on transient at full rated load current (constant current load) (10 ms/div). vin=48v. top trace: vout, 5v/div; bottom trace: on/off input, 5v/div for input voltage start up figure 7: turn-on transient at zero load current (10 ms/div). vin=48v. top trace: vout, 5v/div, bottom trace: input voltage, 30v/div figure 8: turn-on transient at full rated load current (constant current load) (10 ms/div). vin=48v. top trace: vout, 5v/div; bottom trace: input voltage, 30v/div
ds_e48sp12020_08022010 5 electrical characteristics curves figure 9: output voltage response to step-change in load current (75%-50% of io, max; di/dt = 0.1a/s, vin=48v). load cap: 10f, tantalum capacitor and 1f ceramic capacitor. top trace: vout (80mv/div, 200us/div); bottom trace: io (10a/div, 200us/div). scope measurement should be made using a bnc cable (length shorter than 20 inches). position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module.. figure 10: output voltage response to step-change in load current (50%-75% of io, max; di/dt = 0.1a/s, vin=48v). load cap: 10f, tantalum capacitor and 1f ceramic capacitor. top trace: vout (80mv/div, 200us/div); bottom trace: io (10a/div, 200us/div). scope measurement should be made using a bnc cable (length shorter than 20 inches). position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module.. figure 11: test set-up diagram showing measurement points for input terminal ripple current and input reflected ripple current. note: measured input reflected-ripple current with a simulated source inductance (l test ) of 12 h. capacitor cs offset possible battery impedance. measure current as shown below figure 12: input terminal ripple current, i c , at full rated output current and nominal input voltage with 12h source impedance and 100f electrolytic capacitor (200 ma/div, 2us/div). vin+ vin- is ic 100uf, esr=0.2 ohm @ 25 o c 100khz cs: 220uf + + vin+ vin- is ic 100uf, esr=0.2 ohm @ 25 o c 100khz cs: 220uf + + is ic 100uf, esr=0.2 ohm @ 25 o c 100khz cs: 220uf + + + +
ds_e48sp12020_08022010 6 electrical characteristics curves vo(-) vo(+) 10u 1u copper strip scope resistive load figure 13: input reflected ripple current, i s , through a 12h source inductor at nominal input voltage and rated load current (20 ma/div, 2us/div). figure 14: output voltage noise and ripple measurement test setup figure 15: output voltage ripple at nominal input voltage and rated load current (io=20a)(20 mv/div, 2us/div) load capacitance: 1f ceramic capacitor and 10f tantalum capacitor. bandwidth: 20 mhz. scope measurements should be made using a bnc cable (length shorter than 20 inches). position the load between 51 mm to 76 mm (2 inches to 3 inches) from the module.
ds_e48sp12020_08022010 7 safety considerations the power module must be installed in compliance with the spacing and separation requirements of the end-user?s safety agency standard, i.e., ul60950-1, can/csa-c22.2, no. 60950-1 and en60950-1+a11 and iec60950-1, if the system in which the power module is to be used must meet safety agency requirements. basic insulation based on 75 vdc input is provided between the input and output of the module for the purpose of applying insulation requirements when the input to this dc-to-dc converter is identified as tnv-2 or selv. an additional evaluation is needed if the source is other than tnv-2 or selv. when the input source is selv circuit, the power module meets selv (safety extra-low voltage) requirements. if the input source is a hazardous voltage which is greater than 60 vdc and less than or equal to 75 vdc, for the module?s output to meet selv requirements, all of the following must be met: ? the input source must be insulated from the ac mains by reinforced or double insulation. ? the input terminals of the module are not operator accessible. ? if the metal baseplate / heatspreader is grounded the output must be also grounded. ? a selv reliability test is conducted on the system where the module is used , in combination with the module, to ensure that under a single fault, hazardous voltage does not appear at the module?s output. when installed into a class ii equipment (without grounding), spacing consideration should be given to the end-use installation, as the spacing between the module and mounting surface have not been evaluated. the power module has extra-low voltage (elv) outputs when all inputs are elv. this power module is not internally fused. to achieve optimum safety and system protection, an input line fuse is highly recommended. the safety agencies require a fast-acting fuse with 30a maximum rating to be installed in the ungrounded lead. a lower rated fuse can be used based on the maximum inrush transient energy and maximum input current. soldering and cleaning considerations post solder cleaning is usually the final board assembly process before the board or system undergoes electrical testing. inadequate cleaning and/or drying may lower the reliability of a power module and severely affect the finished circuit board assembly test. adequate cleaning and/or drying is especially important for un-encapsulated and/or open frame type power modules. for assistance on appropriate soldering and cleaning procedures, please contact delta?s technical support team. design considerations input source impedance the impedance of the input source connecting to the dc/dc power modules will interact with the modules and affect the stability. a low ac-impedance input source is recommended. if the source inductance is more than a few h, we advise adding a 33 to 100 f electrolytic capacitor (esr < 0.7 ? at 100 khz) mounted close to the input of the module to improve the stability. layout and emc considerations delta?s dc/dc power modules are designed to operate in a wide variety of systems and applications. for design assistance with emc compliance and related pwb layout issues, please contact delta?s technical support team. an external input filter module is available for easier emc compliance design. below is the reference design for an input filter tested with e48sp12020xxxx to meet class b in cisspr 22. schematic and components list e48sp12020 vin(-) vo(-) vin - cx l1 cy1 cy2 cin cy vo(+) vin(+) load cin is 100uf*2 low esr aluminum cap; cx is 2.2uf ceramic cap; cy1 are 10nf ceramic caps; cy2 are 10nf ceramic caps; cy is 1nf ceramic cap; l1 is common-mode inductor, l1=0.53mh; test result: vin=48v, io=20a, yellow line is quasi peak mode; blue line is average mode.
ds_e48sp12020_08022010 8 features descriptions over-current protection the modules include an internal output over-current protection circuit, which will endure current limiting for an unlimited duration during output overload. if the output current exceeds the ocp set point, the modules will automatically shut down, and enter hiccup mode or latch mode, which is optional. for hiccup mode, the module will try to restart after shutdown. if the overload condition still exists, the module will shut down again. this restart trial will continue until the overload condition is corrected. for latch mode, the module will latch off once it shutdown. the latch is reset by either cycling the input power or by toggling the on/off signal for one second. over-voltage protection the modules include an internal output over-voltage protection circuit, which monitors the voltage on the output terminals. if this voltage exceeds the over-voltage set point, the module will shut down, and enter in hiccup mode or latch mode, which is optional. for hiccup mode, the module will try to restart after shutdown. if the output overvoltage condition still exists, the module will shut down again. this restart trial will continue until the over-voltage condition is corrected. for latch mode, the module will latch off once it shutdown. the latch is reset by either cycling the input power or by toggling the on/off signal for one second. over-temperature protection the over-temperature protection consists of circuitry that provides protection from thermal damage. if the temperature exceeds the over-temperature threshold the module will shut down, and enter in auto-restart mode or latch mode, which is optional. for auto-restart mode, the module will monitor the module temperature after shutdown. once the temperature is dropped and within the specification, the module will be auto-restart. for latch mode, the module will latch off once it shutdown. the latch is reset by either cycling the input power or by toggling the on/off signal for one second. remote on/off the remote on/off feature on the module can be either negative or positive logic. negative logic turns the module on during a logic low and off during a logic high. positive logic turns the modules on during a logic high and off during a logic low. remote on/off can be controlled by an external switch between the on/off terminal and the vi(-) terminal. the switch can be an open collector or open drain. for negative logic if the remote on/off feature is not used, please short the on/off pin to vi(-). for positive logic if the remote on/off feature is not used, please leave the on/off pin floating. r load vi(-) vi(+) on/off vo(-) vo(+) r load vi(-) vi(+) on/off vo(-) vo(+) vi(-) vi(+) on/off vo(-) vo(+) figure 16: remote on/off implementation
ds_e48sp12020_08022010 9 thermal considerations thermal management is an important part of the system design. to ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. convection cooling is usually the dominant mode of heat transfer. hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel. thermal testing setup delta?s dc/dc power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. this type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted. the following figure shows the wind tunnel characterization setup. the power module is mounted on a test pwb and is vertically positioned within the wind tunnel. the space between the neighboring pwb and the top of the power module is constantly kept at 6.35mm (0.25??). note: wind tunnel test setup figure dimensions are in millimeters and (inches) 12.7 (0.5?) module a ir flow 50.8 ( 2.0? ) facing pwb pwb a ir velocit y a nd ambient temperature measured below the module figure 17: wind tunnel test setup thermal derating heat can be removed by increasing airflow over the module. to enhance system reliability; the power module should always be operated below the maximum operating temperature. if the temperature exceeds the maximum module temperature, reliability of the unit may be affected.
ds_e48sp12020_08022010 10 thermal curves (without heat spreader) figure 18: temperature measurement location * the allowed maximum hot spot temperature is defined at 122 j e48sp12020(standard) output current vs. ambient temperature and air velocity @vin = 48v (transverse orientation) 0 2 4 6 8 10 12 14 16 18 20 25 30 35 40 45 50 55 60 65 70 75 80 85 ambient temperature ( ?? ) output current (a) natural convection 100lfm 200lfm 300lfm 400lfm 500lfm 600lfm figure 19: output current vs. ambient temperature and air velocity @vin=48v(transverse orientation, without heat spreader) thermal curves (with heat spreader) figure 20: temperature measurement location * the allowed maximum hot spot temperature is defined at 110 j e48sp12020(standard) output current vs. ambient temperature and air velocity @vin = 48v (transverse orientation,with heatspreader) 0 2 4 6 8 10 12 14 16 18 20 25 30 35 40 45 50 55 60 65 70 75 80 85 ambient temperature ( ?? ) output current (a) natural convection 100lfm 200lfm 300lfm 400lfm 500lfm 600lfm figure 21: output current vs. ambient temperature and air velocity @vin=48v(transverse orientation, with heat spreader)
ds_e48sp12020_08022010 11 pick and place location recommended pad layout (smd) surface-mount tape & reel
ds_e48sp12020_08022010 12 leaded (sn/pb) process recommend temperature profile time ( sec. ) pre-heat temp. 140~180 x c 60~120 sec. peak temp. 210~230 x c 5sec. ramp-up temp. 0.5~3.0 x c /sec. temperature ( x c ) 50 100 150 200 250 300 60 0 120 180 240 2nd ramp-up temp. 1.0~3.0 x c /sec. over 200 x c 40~50sec. cooling down rate <3 x c /sec. note: the temperature refers to the pin of e48sp, measured on the pin +vout joint. lead free (sac) process recommend temperature profile temp . time 150 j 200 j 100~140 sec. time limited 90 sec. above 217 j 217 j preheat time ramp up max. 3 j /sec. ramp down max. 4 j /sec. peak tem p . 240 ~ 245 j 25 j note: the temperature refers to the pin of e48sp, measured on the pin +vout joint.
ds_e48sp12020_08022010 13 mechanical drawing (without heatspreader) surface-mount module through-hole module
ds_e48sp12020_08022010 14 mechanical drawing (with heatspreader) *for modules with through-hole pins and the optional heatspreader, they are intended for wave soldering assembly onto system boards, please do not subject such modules through reflow temperature profile. through-hole module pin no. name function 1 2 3 4 5 +vin on/off -vin -vout +vout positive input voltage remote on/off negative input voltage negative output voltage positive output voltage
ds_e48sp12020_08022010 15 part numbering system e 48 s p 120 20 n r f a type of product input voltage number of outputs product series output voltage output current on/off logic pin length/type option code e- eighth brick 48-36v~75v s- single p - high power 120 - 12v 20 -20a n- negative r- 0.170? n- 0.145? m- smd f- rohs 6/6 (lead free) a - standard h - with heatspreader model list model name input output eff @ 100% load E48SP12020NRFA 36v~75v 9a 12v 20a 94.5% default remote on/off logic is negative and pin length is 0.170? for different remote on/off logic and pin length, please refer to part numbering system above or contact your local sales office . contact: www.delta.com.tw/dcdc usa: telephone: east coast: (888) 335 8201 west coast: (888) 335 8208 fax: (978) 656 3964 email: dcdc@delta-corp.com europe: telephone: +41 31 998 53 11 fax: +41 31 998 53 53 email: dcdc@delta-es.tw asia & the rest of world: telephone: +886 3 4526107 x 6220~6224 fax: +886 3 4513485 email: dcdc@delta.com.tw warranty delta offers a two (2) year limited warranty. complete warranty information is listed on our web site or is available upon request from delta. information furnished by delta is believed to be accurate and reliable. however, no responsibility is assumed by delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of delta. delta reserves the right to revise these specifications at any time, without notice .


▲Up To Search▲   

 
Price & Availability of E48SP12020NRFA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X